上杉 周平

1. はじめに

ブレース付鋼架構の弾塑性挙動は、ブレース接合部の 性能に強く影響されることが分かっている¹⁾。北米では ブレース端部を構面外にピンとする設計が主流だが、日 本ではブレース端部の回転拘束に関する意識が比較的 薄い。ブレース付鋼架構の耐震性能について、日米の設 計思想の優劣は明らかにされていない。そこで、本研究 では、米国式にブレース接合部を構面外にピンとした K 形ブレース付鋼架構の弾塑性挙動を実験的に検証した。

試験体の設計

図1に試験体と載荷装置を示す。一層ースパンのラー メンに円形鋼管ブレースをK形に配した架構で、実大建

図1 試験体と載荷装置

表1 鋼材の機械特性

鋼材	材種	$\sigma_y \over (\text{N/mm}^2)$	$\sigma_u \atop (\text{N/mm}^2)$	破断伸び (%)
ブレース	STK400	374	447	39
梁フランジ	SS400	257	436	24
柱	BCR295	378	443	24
PL-6	SS400	324	455	27

表2 溶接接合部の破壊モードと耐力

破壊モード	日本(kN)	米国(kN)
ブレース材とガセット板間の破断	662	748
溶接に沿ってブレース材の破断	811	811
ブレース材の引き抜き破断	887	887
溶接に沿ったガセット板の破断	590	590
ガセット板の有効断面の降伏	552	552
ガセット板の有効断面の破断	775	775
ガセット板の座屈	552	484
ブレース材の欠損断面での破断	403	403

物を 60%縮小した寸法であった。表1に、引張試験に基 づく各鋼材の機械特性を示す。図2にブレース接合部の 詳細を示す。ブレース接合部には Roeder ら²⁾が提唱す る米国式の設計を採用し、現場溶接条件を模擬して、骨 組みを組み立てたあとで、ブレースをガセット板に立向 き姿勢で溶接した。薄いガセット板が曲がることにより、 ブレース端部の構面外回転を許容する。可撓領域を材端 とした材長 2162 mm を有効長さとしたブレースの細長比 は 85 で、引張と圧縮両方の耐力に期待できた。表1に 示す降伏強さを用いたブレースの引張耐力は 356 kN で 曲げ座屈耐力³⁾は 200 kN であった。表2にブレース接 合部に考えられる破壊モードと、鋼構造限界状態設計指 針³⁾(日本)と AISC 規準(米国)に基づいて算定した耐 力を示す。ただし、母材の材料強度には、表1に示す測 定値を、溶接(YGW18)には JIS 規格強度を用いた。

3. 実験計画

図1中『×』の位置で、試験体の構面外変形を拘束した。北側の柱頂部に連結した油圧ジャッキで試験体を繰返し載荷した。層間変形角を振幅0.002、0.00375、0.005、0.0075、0.01、0.015、0.02、0.03、0.04 radで漸増し、振幅0.01 radまでは振幅ごとに3回、以降は2回繰返し、振幅0.04 radは一方のブレースが破断するまで継続した。

油圧ジャッキとピン冶具で荷重と反力を測定した。変 位計測器を配置して、層間変形角、ブレースの材長変化、 下梁のたわみなどを測定した。また、各部材に貼付した 歪ゲージから、架構全体の断面力分布を測定した。

4. 実験結果

可撓領域

219

37/8

図2 ブレース接合部詳細

380

図3に、架構に生じた層せん断力と層間変形角の関係 を示す。図中に、弾性計算に基づく弾性剛性、圧縮ブレ ースが曲げ座屈耐力に達した時点の耐力H₁、架構の塑性

耐力 H_2 を示す。いずれも、可撓領 域間の距離 2162 mm をブレース の有効長さとし、余長部分を剛棒 として算定した。ブレースの曲げ 座屈と座屈後の耐力は、限界状態 設計指針³⁾に基づいて算定した。 振幅 0.002 rad では架構は弾 性応答し、振幅 0.00375 rad の1 サイクル目で北ブレースが座屈 した(図 3 の①)。ブレースが座 屈した際に、設計の意図通り、可 撓領域で折れ曲がり線を形成し た。振幅 0.02 rad で下梁のねじ れが顕著になり(同②)、振幅

Cyclic Loading Tests of Steel Chevron Braced Frames Employing Flexible Bracing Connections

UESUGI Shuhei

0.03 radで圧縮側ブレースの屈服座屈し(同③)、座屈 変形が進行したあと引張側ブレースに亀裂が確認され たが、架構は安定した挙動を示した。最大変位時の耐力 は、振幅 0.03 rad まで正・負載荷でほぼ等しかったが、 振幅 0.04 rad では、正載荷側だけ耐力が低下した。正 載荷側で柱のねじれがより顕著であったことが原因だ と考えられる。振幅 0.04 rad の3回目の負載荷時に、 北側ブレースが中央で破断し、耐力が 48 kN 低下したと ころ(同④)で載荷を終了した。

図 4 に北側ブレースの軸方向力と軸方向変形の関係 を示す。軸方向力は各部材に貼付した歪ゲージから測定 し、軸方向変形は円形鋼管の部材長変化を直接測定した。 図中には本実験と同一ブレースの単体実験⁴⁾から得た履 歴も併せて示す。本試験体で得たブレースの最大圧縮耐 力は 210 kN、ブレース単体実験は 199 kN で、いずれも 曲げ座屈耐力 200 kN に極めて近かった。振幅 0.02 rad を超える大変形領域でも、ブレース単体実験とほぼ同じ 応答履歴を示したことは、ブレースが周辺部材の干渉を あまり受けなかったことを示唆する。

5. 考察

本実験(以後試験体4)と、ブレース接合部だけが異なり、ブレース端部を構面外回転に対して強く拘束した 試験体⁵⁾(試験体3)の挙動を比較する。

図 5 にブレース軸方向力とブレース端部の構面外回 転角の関係を示す。(a)は振幅 0.002 から 0.00375 rad まで、(b)は振幅 0.02 rad での履歴応答を比較する。振 幅 0.00375 rad で試験体 4 のブレースは 0.05rad 回転し たが、試験体 3 はほとんど回転しなかった。振幅 0.02 rad では、試験体 4 の方が試験体 3 に比べて、2 割以上 大きく回転した。

図6に各振幅の最大正側変位で計測した、架構の層せ

の分担力が小さかった。これは、試験体4が試験体3の 1.5倍の面積のガセット板を有しており、ラーメンの水 平剛性が高まるためだと考えられる。

6. まとめ

ブレース接合部を構面外にピンとしたブレース付鋼 架構について繰返し載荷実験を行った。架構は振幅 0.04 rad まで安定した履歴を示し、ブレース接合部は設計通 りに可撓領域で折れ曲がり線を形成した。大変形領域で、 架構内のブレース応答は、ブレース単体実験とほぼ同じ 履歴を示した。ブレース接合部を構面外に強く拘束した 試験体と比較したところ、ブレース接合部を構面外にピ ンとした本試験体は、ラーメンの分担力が大きく、ブレ ースの分担力が小さかった。

参考文献

1) 岡崎太一郎、井上桂輔、浅田勇人、緑川光正、麻里哲広:接 合部がK形ブレース付鋼架構の繰り返し水平載荷挙動に及ぼす 影響、日本建築学会北海道支部研究報告集 No. 89 (2016年6月) 2) Roeder CW, Lumpkin EJ, Leman DE (2011): A balanced design procedure for special concentrically braced frame connections. *Journal of Constructional Steel Research*, 67, 1760-1772

3)日本建築学会:鋼構造限界状態設計指針・同解説、丸善出版、 2010

4) 浅田勇人、岡崎太一郎、田中剛、橋岡昇吾:接合部性能に着 目したブレース付ラーメンの耐震性能評価 その2 円形鋼管 ブレース (D/t=18)の載荷実験、日本建築学会大会学術講演梗 概集 pp1123-1124, 2015, 7

5) 井上桂輔:接合部形状が K 形ブレース付鋼架構の繰り返し水 平載荷挙動に及ぼす影響、平成 27 年北海道大学修士論文

層間変形角(rad)

図6 最大正側変位時のせん断力

試験体3

300

200

100

-200

-300

-0.1 -0.05

(a)

0 -100

軸方向力(kN)

試験体4

図5 ブレース履歴応答

構面外回転角(rad)

(b)